15 research outputs found

    Multi-objective optimization determines when, which and how to fuse deep networks: an application to predict COVID-19 outcomes

    Full text link
    The COVID-19 pandemic has caused millions of cases and deaths and the AI-related scientific community, after being involved with detecting COVID-19 signs in medical images, has been now directing the efforts towards the development of methods that can predict the progression of the disease. This task is multimodal by its very nature and, recently, baseline results achieved on the publicly available AIforCOVID dataset have shown that chest X-ray scans and clinical information are useful to identify patients at risk of severe outcomes. While deep learning has shown superior performance in several medical fields, in most of the cases it considers unimodal data only. In this respect, when, which and how to fuse the different modalities is an open challenge in multimodal deep learning. To cope with these three questions here we present a novel approach optimizing the setup of a multimodal end-to-end model. It exploits Pareto multi-objective optimization working with a performance metric and the diversity score of multiple candidate unimodal neural networks to be fused. We test our method on the AIforCOVID dataset, attaining state-of-the-art results, not only outperforming the baseline performance but also being robust to external validation. Moreover, exploiting XAI algorithms we figure out a hierarchy among the modalities and we extract the features' intra-modality importance, enriching the trust on the predictions made by the model

    A Deep Learning Approach for Overall Survival prediction in Lung Cancer with Missing Values

    Full text link
    One of the most challenging fields where Artificial Intelligence (AI) can be applied is lung cancer research, specifically non-small cell lung cancer (NSCLC). In particular, overall survival (OS), the time between diagnosis and death, is a vital indicator of patient status, enabling tailored treatment and improved OS rates. In this analysis, there are two challenges to take into account. First, few studies effectively exploit the information available from each patient, leveraging both uncensored (i.e., dead) and censored (i.e., survivors) patients, considering also the events' time. Second, the handling of incomplete data is a common issue in the medical field. This problem is typically tackled through the use of imputation methods. Our objective is to present an AI model able to overcome these limits, effectively learning from both censored and uncensored patients and their available features, for the prediction of OS for NSCLC patients. We present a novel approach to survival analysis with missing values in the context of NSCLC, which exploits the strengths of the transformer architecture to account only for available features without requiring any imputation strategy. By making use of ad-hoc losses for OS, it is able to account for both censored and uncensored patients, as well as changes in risks over time. We compared our method with state-of-the-art models for survival analysis coupled with different imputation strategies. We evaluated the results obtained over a period of 6 years using different time granularities obtaining a Ct-index, a time-dependent variant of the C-index, of 71.97, 77.58 and 80.72 for time units of 1 month, 1 year and 2 years, respectively, outperforming all state-of-the-art methods regardless of the imputation method used.Comment: 20 pages, 2 figure

    Functional and Taxonomic Traits of the Gut Microbiota in Type 1 Diabetes Children at the Onset: A Metaproteomic Study

    Get PDF
    Type 1 diabetes (T1D) is a chronic autoimmune metabolic disorder with onset in pediatric/adolescent age, characterized by insufficient insulin production, due to a progressive destruction of pancreatic beta-cells. Evidence on the correlation between the human gut microbiota (GM) composition and T1D insurgence has been recently reported. In particular, 16S rRNA-based metagenomics has been intensively employed in the last decade in a number of investigations focused on GM representation in relation to a pre-disease state or to a response to clinical treatments. On the other hand, few works have been published using alternative functional omics, which is more suitable to provide a different interpretation of such a relationship. In this work, we pursued a comprehensive metaproteomic investigation on T1D children compared with a group of siblings (SIBL) and a reference control group (CTRL) composed of aged matched healthy subjects, with the aim of finding features in the T1D patients' GM to be related with the onset of the disease. Modulated metaproteins were found either by comparing T1D with CTRL and SIBL or by stratifying T1D by insulin need (IN), as a proxy of beta-cells damage, showing some functional and taxonomic traits of the GM, possibly related to the disease onset at different stages of severity

    Gut Microbiota Functional Traits, Blood pH, and Anti-GAD Antibodies Concur in the Clinical Characterization of T1D at Onset

    Get PDF
    Alterations of gut microbiota have been identified before clinical manifestation of type 1 diabetes (T1D). To identify the associations amongst gut microbiome profile, metabolism and disease markers, the 16S rRNA-based microbiota profiling and H-1-NMR metabolomic analysis were performed on stool samples of 52 T1D patients at onset, 17 T1D siblings and 57 healthy subjects (CTRL). Univariate, multivariate analyses and classification models were applied to clinical and -omic integrated datasets. In T1D patients and their siblings, Clostridiales and Dorea were increased and Dialister and Akkermansia were decreased compared to CTRL, while in T1D, Lachnospiraceae were higher and Collinsella was lower, compared to siblings and CTRL. Higher levels of isobutyrate, malonate, Clostridium, Enterobacteriaceae, Clostridiales, Bacteroidales, were associated to T1D compared to CTRL. Patients with higher anti-GAD levels showed low abundances of Roseburia, Faecalibacterium and Alistipes and those with normal blood pH and low serum HbA(1c) levels showed high levels of purine and pyrimidine intermediates. We detected specific gut microbiota profiles linked to both T1D at the onset and to diabetes familiarity. The presence of specific microbial and metabolic profiles in gut linked to anti-GAD levels and to blood acidosis can be considered as predictive biomarker associated progression and severity of T1D

    Gut microbiota functional profiling in autism spectrum disorders: bacterial VOCs and related metabolic pathways acting as disease biomarkers and predictors

    Get PDF
    BackgroundAutism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder. Major interplays between the gastrointestinal (GI) tract and the central nervous system (CNS) seem to be driven by gut microbiota (GM). Herein, we provide a GM functional characterization, based on GM metabolomics, mapping of bacterial biochemical pathways, and anamnestic, clinical, and nutritional patient metadata.MethodsFecal samples collected from children with ASD and neurotypical children were analyzed by gas-chromatography mass spectrometry coupled with solid phase microextraction (GC–MS/SPME) to determine volatile organic compounds (VOCs) associated with the metataxonomic approach by 16S rRNA gene sequencing. Multivariate and univariate statistical analyses assessed differential VOC profiles and relationships with ASD anamnestic and clinical features for biomarker discovery. Multiple web-based and machine learning (ML) models identified metabolic predictors of disease and network analyses correlated GM ecological and metabolic patterns.ResultsThe GM core volatilome for all ASD patients was characterized by a high concentration of 1-pentanol, 1-butanol, phenyl ethyl alcohol; benzeneacetaldehyde, octadecanal, tetradecanal; methyl isobutyl ketone, 2-hexanone, acetone; acetic, propanoic, 3-methyl-butanoic and 2-methyl-propanoic acids; indole and skatole; and o-cymene. Patients were stratified based on age, GI symptoms, and ASD severity symptoms. Disease risk prediction allowed us to associate butanoic acid with subjects older than 5 years, indole with the absence of GI symptoms and low disease severity, propanoic acid with the ASD risk group, and p-cymene with ASD symptoms, all based on the predictive CBCL-EXT scale. The HistGradientBoostingClassifier model classified ASD patients vs. CTRLs by an accuracy of 89%, based on methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, ethanol, butanoic acid, octadecane, acetic acid, skatole, and tetradecanal features. LogisticRegression models corroborated methyl isobutyl ketone, benzeneacetaldehyde, phenyl ethyl alcohol, skatole, and acetic acid as ASD predictors.ConclusionOur results will aid the development of advanced clinical decision support systems (CDSSs), assisted by ML models, for advanced ASD-personalized medicine, based on omics data integrated into electronic health/medical records. Furthermore, new ASD screening strategies based on GM-related predictors could be used to improve ASD risk assessment by uncovering novel ASD onset and risk predictors

    AIforCOVID: predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. An Italian multicentre study

    Full text link
    Recent epidemiological data report that worldwide more than 53 million people have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease has been spreading very rapidly and few months after the identification of the first infected, shortage of hospital resources quickly became a problem. In this work we investigate whether chest X-ray (CXR) can be used as a possible tool for the early identification of patients at risk of severe outcome, like intensive care or death. CXR is a radiological technique that compared to computed tomography (CT) it is simpler, faster, more widespread and it induces lower radiation dose. We present a dataset including data collected from 820 patients by six Italian hospitals in spring 2020 during the first COVID-19 emergency. The dataset includes CXR images, several clinical attributes and clinical outcomes. We investigate the potential of artificial intelligence to predict the prognosis of such patients, distinguishing between severe and mild cases, thus offering a baseline reference for other researchers and practitioners. To this goal, we present three approaches that use features extracted from CXR images, either handcrafted or automatically by convolutional neuronal networks, which are then integrated with the clinical data. Exhaustive evaluation shows promising performance both in 10-fold and leave-one-centre-out cross-validation, implying that clinical data and images have the potential to provide useful information for the management of patients and hospital resources

    Multi-objective optimization determines when, which and how to fuse deep networks : an application to predict COVID-19 outcomes

    No full text
    The COVID-19 pandemic has caused millions of cases and deaths and the AI-related scientific community, after being involved with detecting COVID-19 signs in medical images, has been now directing the efforts towards the development of methods that can predict the progression of the disease. This task is multimodal by its very nature and, recently, baseline results achieved on the publicly available AIforCOVID dataset have shown that chest X-ray scans and clinical information are useful to identify patients at risk of severe outcomes. While deep learning has shown superior performance in several medical fields, in most of the cases it considers unimodal data only. In this respect, when, which and how to fuse the different modalities is an open challenge in multimodal deep learning. To cope with these three questions here we present a novel approach optimizing the setup of a multimodal end-to-end model. It exploits Pareto multi-objective optimization working with a performance metric and the diversity score of multiple candidate unimodal neural networks to be fused. We test our method on the AIforCOVID dataset, attaining state-of-the-art results, not only outperforming the baseline performance but also being robust to external validation. Moreover, exploiting XAI algorithms we figure out a hierarchy among the modalities and we extract the features’ intra-modality importance, enriching the trust on the predictions made by the model

    Building an AI-enabled metaverse for intelligent healthcare : opportunities and challenges

    No full text
    This abstract discusses the development of a metaverse for intelligent healthcare, which involves creating a virtual environment where healthcare professionals, patients, and researchers can interact and collaborate using digital technologies. The metaverse can improve the efficiency and effectiveness of healthcare services and provide new opportunities for research and innovation. AI models are necessary for analyzing patient data and providing personalized healthcare recommendations, but the data in a metaverse setting is inherently multimodal, unstructured, noisy, incomplete, limited, or partially inconsistent, which poses a challenge for AI models. However, it becomes necessary the integration of AI models for the development of virtual scanners to simulate image modalities, and robotics to simulate surgical procedures within a virtual environment. The ultimate goal is to leverage the power of AI to enhance the quality of healthcare in a metaverse for intelligent healthcare, which has the potential to transform the way healthcare services are delivered and improve health outcomes for patients worldwide

    Building an AI-enabled metaverse for intelligent healthcare : opportunities and challenges

    No full text
    This abstract discusses the development of a metaverse for intelligent healthcare, which involves creating a virtual environment where healthcare professionals, patients, and researchers can interact and collaborate using digital technologies. The metaverse can improve the efficiency and effectiveness of healthcare services and provide new opportunities for research and innovation. AI models are necessary for analyzing patient data and providing personalized healthcare recommendations, but the data in a metaverse setting is inherently multimodal, unstructured, noisy, incomplete, limited, or partially inconsistent, which poses a challenge for AI models. However, it becomes necessary the integration of AI models for the development of virtual scanners to simulate image modalities, and robotics to simulate surgical procedures within a virtual environment. The ultimate goal is to leverage the power of AI to enhance the quality of healthcare in a metaverse for intelligent healthcare, which has the potential to transform the way healthcare services are delivered and improve health outcomes for patients worldwide
    corecore